The BASIC keywords

This section consists of a list of all BASIC keywords with descriptions and examples of use.

ABS
A function giving the absolute value of its argument. Example:

PRINT ABS(4),ABS(-3.2)

4
3.2

ACS
A function giving the arc cosine of its argument in radians.

ADVAL
Not implemented.

AND
An operator that performs bit-by-bit

ANDing of its two arguments. It can be used as a logical operator in

TRUE/FALSE contexts. Examples:

A%=X% AND 3

IF A%=2 AND B%=3 THEN 110

ASC
A function returning the ASCII value of the first character of the argument string.

If the string is null then -1 will be returned.

ASN
A function giving the arc sine of its argument in radians.

ATN
A function giving the arc tangent of its argument in radians.

AUTO
A command allowing the user to enter BASIC lines in sequence with the line numbers

provided automatically. AUTO mode is left by pressing ESC. There are two optional

arguments: the starting line number (default 10) and the step size (between 1 and

255, default 10). Examples:

AUTO
starts at 10 with step 10

AUTO 100
starts at 100 with step 10

AUTO 100,1
starts at 100 with step 1

AUTO ,2
starts at 10 with step 2

BGET#
A function which gets a byte from the file whose channel number is the first

argument. Note the normal ATOM COS constraints apply, i.e. there is no buffering and

room must be allowed between bytes on PUTting to allow processing during GETting.

Example:

E=BGET#HANDLE%

BPUT#
A statement which puts a byte to the file whose channel number is the first

argument. The second argument's least significant byte is sent. Note the comments

for BGET#. Examples:

BPUT#HANDLE%,32

BPUT#HANDLE%,A%/256

CALL
A statement to call apiece of machine code. CALL initialises a control block at address

hex 0600 in store to contain the number of parameters and pointers to each parameter

with an attached type. The processor's A, X, and y registers and the C carry flag are

initialised to the least-significant bytes of A%, X% and y% respectively and the least-

significant bit of C%. See also USR. .a8Parameter types are:

0
-
byte e.g.
?A%

4
-
word e.g. !A% or A%

5
-
real e.g.
A

128
-
fixed string e.g. $A% terminated by CHR$13

129
-
movable string e.g. A$

The value given is the absolute address of the item, except in the case of moveable

strings (code 129) where the address is that of the start of a parameter block

containing start address, maximum length, and current length of the string.

Examples:

CALL &FFE3

CALL MULDIV,A,B,C,D

CHAIN
A statement which will load and run the program whose name is specified in the

argument. All variables except @% to Z% are CLEARed. Examples:

CHAIN "PROG1"

CHAIN A$

CHR$
A string function returning a string of length 1 containing the ASCII character specified

by the least significant byte of the numeric argument. Example:

PRINT CHR$(6S)

A

CLEAR
A statement which clears all the dynamic variables, including arrays. The variables

A% to Z% and @% are static and are unaffected.

CLG
A statement that clears the current graphics area. It is equivalent to a MODE

statement in the current mode.

CLOSEt#
A dummy statement whose normal function is not required by the ATOM COS.

CLS
A statement that clears the current text area. It is equivalent to PRINT CHR$12:

COLOUR
Not implemented.

COS
A function giving the cosine of its radian argument.

COUNT
A function returning the number of characters printed since the last new line.

DATA
A program object which must precede all lists of data for READ. String values may be

quoted or unquoted as for INPUT, and the numeric values may include calculation so

long as no reserved words are included. Example:

DATA FRANCIS,16,"JOHN ",15,"JULIE ",15

DEF
A program object which introduces the definition of a user function FN or a user

procedure PROC. If encountered at execution then the rest of the line is ignored so

that single-line definitions can be put anywhere in the program. Multiple-line

definitions must not be executed: it is recommended that they are placed at the end of

the main program text. There is no speed advantage gained in placing them at the

start of the program. Example:

DEF FNMEAN(Vl,V2)=(Vl,V2)/2

DEG A
function which converts radians to degrees.

DELETE A
command which deletes a group of lines from the program. The two arguments

indicate the first and last lines of the group respectively. Examples:

DELETE 10,15
delete lines 10 to 15

DELETE 0,20
delete up to line 20

DELETE 20,32767
delete all lines after 19

DIM A
statement which declares arrays. Arrays must be declared before use. Integer, real

and string arrays may be multi-dimensional. The extents in each dimension are

specified as a bracketed list of values separated by commas. DIM sets all elements' in

the array to 0 or null, depending on type. Arrays may not be redimensioned. By

following the integer name with an unbracketed extent value, DIM can also be used to

dimension integers to point at an area of memory which the interpreter will not then

use. This can be used for positioned strings, data structures, machine code etc.

Example:

DIM A(20),A$(2,4),A%(3,4,5,6),MC% 100

DIV
A binary operation giving integer division.

DRAW
A statement to draw a line to the point specified by its two arguments in the current

graphics foreground colour. It is equivalent to PLOTS.

ELSE
A statement indicating the start of instructions to be executed if, in an IF structure, the

condition is FALSE, or in an ON structure, the tested value is out-of-range. Examples:

IF A=B THEN B=C ELSE B=D

ON A% GOTO 100,110,130 ELSE 500

END
A statement that terminates execution of the program and returns the interpreter to

direct mode. There is no restriction on the number and position of END statements in

a program.

ENDPROC
A statement denoting the end of a procedure. The values of all LOCAL variables and

the dummy arguments are restored at ENDPROC and the program returns to the
statement after the calling statement.

ENVELOPE
Not implemented.

EOF
Not implemented.

EOR
An operator that performs bit-by-bit exclusive-or of its two arguments. It can also be

used as a logical operator in TRUE/FALSE contexts. Examples:

X% = B% EOR 4

IF A=2 EOR B=3 THEN 110

ERL
A function returning the number of the line where the last error occurred. Errors in

direct mode give the value 0.

ERR
A function returning the error code number of the last error.

ERROR
See ON.

EVAL
A function which applies the interpreter's expression evaluation program to the

contents of the argument string.

EXP
A function returning 'e' to the power of the argument.

EXT#
Not implemented.

FALSE
A pseudo-variable with the value -1, for use in logical expressions.

FN
A reserved word used at the start of all user declared functions. A function may be

defined with any number of argum~ts of any type, and may return (using =) a

string or numeric quantity. A function definition is terminated by ‘=’ used in the

statement position. The values of the dummy arguments are set to those of the formal

arguments when the function is called. Examples:

DEF FNMEAN(Ql,Q2,Q3,Q4)=(Ql+Q2+Q3+Q4)/4

DEF FNFACTORIAL(N) IF N<2 THEN =1

ELSE =FNFACTORIAL(N-1)*N

DEF FNREVERSE(A$) LOCALB$,Z%

FORZ%=1TOLEN(A$):

$=MID$(A$,Z%,1)+B$:NEXT:=B$

FOR
A statement initialising a FOR ...NEXT loop. The loop is executed at least once. Any

numeric assignable item may be used as the control variable. Integer control variables

are three times quicker than real variables at the NEXT statement and also much

faster when indexing an array. Examples:

FORA=0TO9

FORA%=0TO9

FORA(2,3,1)=0TO9

GCOL
Not implemented.

GET
A function that returns the ASCII code of the next character from the input stream,

waiting for a key-press if necessary.

GET$
A function that returns the next character from the input stream as a string, waiting for

a key-press if necessary.

GOSUB
As GOTO but allows RETURN. GOSUBs may be nested to a maximum depth of 26.

GOTO
A statement which transfers execution to the line indicated by its argument, which may

be a constant number or calculated value.

HIMEM
A pseudo-variable which sets and gives the maximum address used by the interpreter.

IF
Part of the conditional IF ...THEN ... ELSE statement. It introduces a logical

expression, the value of which determines wheth~r the following statements or those

after the next optional ELSE, are to be executed. Examples:

IF A=B THEN 110

IF A<C OR A>D GOTO 110

IF A>C AND C>=D THEN GOTO 110

IF A<Q PRINT"I THINK IT IS LESS"

IF A>Q THEN PRINT"I THINK IT IS GREATER"

IF A>=Q THEN PRINT"GREATER OR EQUAL":END

INKEY
A function that performs a GET but waits for a maximum of n clock ticks where n is the

argument. At the end of this period, -1 is returned. INKEY of negative numbers is not

supported. Examples:

N=INKEY(0)

N$=INKEY$(100)

INKEY$
A function that performs a GET$ but waits for a maximum of n clock ticks where n is

the argument. At the end of this period, -1 is returned. INKEY$ of negative numbers is

not supported.

INPUT
A statement to input values from the keyboard. Example:

INPUT A,B,C,D$,"WHO ARE YOU",W$,"NAME"R$

If items are not immediately preceded by a printable string (even if null) then a "?" will

be printed as a prompt. Items A, B, C, D$ in the above example can have their

answers returned on one to four lines, separate items being separated by commas.

Extra items will be ignored. Then WHO ARE YOU? is printed (the question mark

comes from the comma) and W$ is input, then NAME is printed and R$ is input. The

statement INPUT A is exactly equivalent to INPUT A$:A = VAL(A$). Leading spaces

will be removed from input, but not trailing spaces. Strings in quoted form are taken as

they are, with a possible error occuring for a missing closing quote.

INPUTLINE
A statement of identical syntax to INPUT which uses a new line for each item to be

input. The item input is taken as is.

INPUT#
A statement which reads internal forms from tape and puts them in the specified

items. The first argument is the channel number.

Example:

INPUT#E A,B,C,D$,E$,F$

INSTR
A function which returns the position of a sub-string within a string, optionally starting

the search at a specified place in the string. Examples:

INSTR(A$,B$)

INSTR(A$,B$,Z%)

INT
A function truncating a real number to the lower integer.

LEFT$

A string function which returns the left n characters of the string. If there are

insufficient characters in the string then all are returned. Examples:

LEFT$(A$,2)

LEFT$(RIGHT$(A$,3),2)

LEN
A function which returns the length of the argument string. Examples:

LENA$

LEN$(A%+6)

LET
An optional assignment statement.

LIST
A command which causes lines of the current program to be listed out with the

automatic formatting options specified by LISTO. The command can be followed by

start and finish line numbers, separated by a comma. Examples:

LIST

LIST ,100

LIST 100,500

Note that L. is a convenient abbreviation for LIST.

LISTO
A command which sets options for the format of a LISTed program. LISTO takes an

integer in the range 0 to 7. The three bits have the following effects when set:

Bit
Effect

0 A single space is printed after the line number on each line.

1 A double space is printed out n times after the line number, where n is the

current level of nested FOR ...NEXT loops.

2 A double space is printed out m times after the line number, where m is

the current level of nested REPEAT ...UNTIL loops.

Note that n and m are set according to the lines actually listed out so far. It is useful to

set LISTO 0 when doing a lot of cursor editing.

LN
A function giving the natural logarithm of its argument.

LOAD
A command which loads anew program from a file and CLEARs the variables of the

old program. Example:

LOAD"PRIMES"

LOCAL
A statement which saves the values of its arguments in such a way that they will be

restored at = or ENDPROC. The arguments are set to zero or null. It can only be used

inside a FN or PROC. See FN for an example.

LOG
A function giving the common (base 10) logarithm of its argument.

LOMEM
A pseudo-variable which controls where in memory dynamic variables and

dimensioned arrays are to be placed. The default is TOP, the first free address after

the end of the program.

MID$
A string function which extracts a sub-string from the middle of its argument string.

The second argument specifies the start position of the sub-string, and the third its

length. If the length is omitted or there are insufficient characters in the string then all

from the start position onwards are returned.

Examples:

MID$(A$,Z,X) MID$(A$,Z)

MOD
A binary operation giving the signed remainder of the integer division. MOD is

defined such that:

A MOD B = A -(A DIV B) * B Example:

A% = B% MOD C%

MODE
A statement which selects the specified display screen mode (0-7), and clears the

screen. The relationship between BBC BASIC modes and the normal ATOM modes is

as follows:

BBC
ATOM

0-3 4

4
3

5
2

6
1

7
0

MODE cannot be used inside a PROC or FN Examples:

MODE 7

MODE A

MOVE
A statement to move the graphics cursor to the specified co-ordinates. It is equivalent

to PLOT4.

NEW
A command which initialises the interpreter for a new program to be typed in. The old

program may be recovered with the OLD command provided no errors have occurred

and no new lines have been typed in.

NEXT
The statement terminating FOR ...NEXT loops. NEXT takes an optional control

variable: if present then FOR ...NEXT loops may be 'popped' in an attempt to match to

the correct FOR statement.

NOT
A high priority unary operator equivalent to unary minus. Examples:

IF NOT(A=B AND C=D) THEN 2100

A% = NOT B% AND C%

OFF
A program object used to re-enable the default error handler. Example:

ON ERROR OFF See ON.

OLD
A command which undoes the effect of NEW, provided no new lines have been typed

in and no new variables have been created.

ON
A statement controlling a multi-way switch or error trapping. When used in -one of the

forms:

ON <expression> GOTO ...

ON <expression> GOSUB ...

the structure is followed by a list of line numbers separated by commas, optionally

followed by ELSE and one or more statements. The integer value of the expression

selects the line number to be used, with the ELSE statements being executed if the

corresponding line number is not provided. The values in the list are skipped without

calculation but it will get confused by ASC"," appearing.

ON can also be used to trap errors:

ON ERROR ...

The statements following ON ERROR are executed whenever a BASIC error occurs.

ON ERROR OFF re-enables the default error handler.

Examples:

ON A% GOTOI0,20,30,30:ELSE PRINT "Illegal"

ON B% GOSUBI00,200,C+200:ELSE PRINT "What?"

ON ERROR PRINT "Suicide" :END

ON ERROR GOTO 100

ON ERROR OFF

OPENIN
A dummy function which normally opens the named file for input and updating and

returns the channel number of the file. The 'ATOM COS only allows one open file

(for input or output), and this function just returns 13 as the channel number. Example:

H%=OPENIN"DATA"

OPENOUT
A dummy function which normally opens the named file for output and returns the

channel number of the file. The ATOM COS only allows one open file, and this

function just returns 13 as the channel number. Example:

H%=OPENOUT"DATA"

OPT
An assembler pseudo-operation controlling output to the screen during assembly.

OPT is followed by an expression, the two least-significant bits of which have the

following effects when set:

Bit
Effect

0 assembler listing on

1 assembler errors on

The default OPT is 3.

OR
An operator that performs bit-by-bit ORing of its arguments. It can be used as a logical

operator in TRUE/FALSE contexts. Examples:

IF A=2 OR B=3 THEN 110

X% = B% OR 4

PAGE
A pseudo-variable controlling the starting page of the current text area. With

careful use, several programs can be held in RAM memory without the need for

saving them. Examples:

PAGE=&1900

PAGE=PAGE+&100

PI
A pseudo-variable with the value 3.14159265.

PLOT
A multi-purpose graphics statement. The first argument selects the function, and the

second and third arguments are x and y co-ordinates for that function. The lower

seven bits of the first argument have the following meanings:

Bit
Value
Function

0,1
00
No change in memory while plotting (e.g. MOVE)

01
Plot in graphics foreground colour

10
Plot inverting colour

11
Plot in graphics background colour

2
0
Relative plot co-ordinates

2 Absolute plot co-ordinates

3-5
Must be 0

6
0
Line (continuous, with both endpoints)

1
Point

The maximum x and y co-ordinates are 1280 and 1024 respectively in all modes.

Example:

PLOT&45,X,Y (plots a point in the graphics foreground colour at X,Y)

POINT
Not implemented.

POS
Not implemented.

PRINT
A statement that prints numbers, characters and strings on the display. PRINT is

followed by a list of variables and constants to be printed, with special items to control

the format and position of printing. The width of the print field, and the number of

figures and decimal places printed for numbers, are controlled by the variable @%.

The four bytes of the value have the following functions:

Byte
Function

0
Print field width

1
Maximum total number of digits printed

2
Numeric format:

0
General format

1
Exponent format

2
Fixed format

3
STR$ format:

0
Ignore bytes 0-2

1
Use bytes 0-2

Byte 1 controls the number ~f digits in a mode. If it is out of range then 9 is assumed.

In G mode it specifies the maximum number of digits to be printed between land 9. In

E mode it specifies the exact number of digits to be printed between land 9. In F mode

it specifies the number of digits to follow the decimal point, between 0 and 9.

E mode will print an optional -sign, one digit, a decimal point, <Byte 1>-1

digits, an E and an exponent field in 3 characters, padded with trailing spaces if

necessary. The G mode will print integral values as integers, numbers in the range 0.1

to 1 as 0.1 etc, numbers less than .1 or greater than lE<Byte 1> with an exponent of

as few characters as possible. F mode will print numbers with <Byte 1> digits after the

decimal point unless the total number would then have more than nine digits in which

case G mode is used. Examples (all shown right justified):

Number
G2
G9
F2
E2

.1
0.1
0.1
0.10
1.0E-l

.01
1E-2
1E-2
0.01
1.0E-2

.001
1E-3
1E-3
0.00
1.0E-3

.005
5E-3
5E-3
0.01
5.0E-3

1
1
1
1.00
1.0 E0

10
10
10
10.00
1.0E1

100
1E2
100
100.00
1.0E2

The following characters have special functions in PRINT:

Character
Function

,
Causes the next item to be printed in the next field

;
Separates items without the effect of , .

Suppresses the new line at the end of the PRINT statement.

-
Causes all numbers to be printed in hex until ' or , is reached

,
Prints new line

Examples

Result

@%=&00090A

PRINT 1,2

1
2

PRINT10,200
10
200

PRINT10;200
10200

PRINT"Answer ";A
Answer
42

PRINT"Answer "A
Answer

42

PRINT"Answer ",A
Answer

42

PRINT"Hi " , "Hi"
Hi
Hi

PRINT"Hi " ; "Hi"
HiHi

PRINT1'20

1

20

PRINT#
A statement which writes the internal form of a value out to tape. The first argument is

the channel number. All numeric constants are written as five bytes of binary real data.

All strings are written as the bytes in the string plus a carriage return. Example:

PRINT#E,A,B,C,D$,E$,F$

PROC
A reserved word used at the start of all user-declared procedures. The arguments in

the body of the procedure are set to the " values of the arguments in the call.

Example:

INPUT"Number of discs "F

PROCHANOI(F,1,2,3)

END

DEF PROCHANOI(A,B,C,D) IFA=O ENDPROC

PROCHANOI(A-1,B,D,C)

PRINT"Move disk ";A" from pile ";B" to pile ";C

PROCHANOI(A-1,D,C,B)

ENDPROC

PTR#
Not implemented.

RAD
A function which converts degrees to radians. Example: S%=SINRAD(90)

READ
A statement which will set variables to values read from the DATA statements in the

program. Strings may be enclosed in double quotes unless they have leading spaces

or contain commas.

REM
A statement that causes the rest of the line to be ignored, allowing comments in the

program.

RENUMBER
A command which will renumber the lines and correct the cross references inside a

program accordingly. Options are as for AUTO. RENUMBER produces messages

when a cross reference fails.

REPEAT
A statement which is the starting point of a REPEAT ...UNTIL loop. The statements

inside the loop are executed and repeated until the expression after UNTIL is true. A

single REPEAT may have more than one UNTIL. These loops may be nested up to a

maximum depth of 20. Example: REPEAT A%=A%+RND(3)-1:UNTIL A%>B%

REPORT
A statement which prints out a newline followed by the last-made error string.

RESTORE
A statement that can be used at any time in a program to set the place where DATA

comes from. The optional parameter for RESTORE can specify a calculated line

number. Examples:

RESTORE

RESTORE 100

RESTORE (10*A+20)

RETURN
A statement causing execution to return to the statement after the most recently

executed GOSUB statement.

RIGHT$
A string function which returns the right n characters of the string. If there are

insufficient characters in the string then all are returned. Examples:

RIGHT$(A$,2)

RIGHT$(LEFT$(A$,3),2)

RND
A function with optional parameter that provides random numbers. RND(l) returns a

real number in the range 0.0 to :99999999. RND returns a random integer 0 –

&FFFFFFFF. RND(n) returns an integer in the range 1 to n. If n is negative the

pseudo-random sequence generator is set to a number based on nand n is returned. If

n is 0 the last RND(l) random number is returned. The argument to RND must always

be bracketed and there must be no spaces between RND and the left bracket.

RUN
A statement that runs the program in the current PAGE. All variables except @% to

Z% are CLEARed.

SAVE
A statement which saves the current program area to a file. Example:

SAVE"PRIMES"

SGN
A function returning -1 for negative argument, 0 for 0 argument and +1 for positive

argument.

SIN
A function giving the sine of its radian argument.

SOUND
A statement that produces a sound from the ATOM's internal loudspeaker. Four

arguments are required: the first two are ignored, the third controls the period of the

tone, and the fourth sets the duration in 10ms units. Example:

SOUND 0,0,300,100

SPC
A function which outputs n MOD 256 spaces where n is the argument. It can only be

used in PRINT or INPUT.

SQR
A function returning the square root of its argument.

STEP
Part of the FOR statement, this optional section specifies step sizes other than 1.

STOP
Syntactically identical to END, STOP also prints a message to the effect that the

program has stopped.

STR$
A string function which returns the string form of the numeric argument as it would

have been printed. If the most-significant byte of @% is I, STR$ uses the current @%

description for printing numbers, and if zero (the initial value) the G9 format (see

PRINT) is used.

STR$~
A string function that returns the string form of the numeric argument as it would have

been printed in hex.

STRING$
A function returning n concatenations of a string, where n is the argument. Example:

STRING$ (10, “*--* “)

TAB
A function that changes the position of printing, only available in PRINT or INPUT.

TAB(X) will attempt to make COUNT equal to X by printing a new line if required plus

some spaces. TAB(X,Y) will perform a cursor move on the screen to character cell X,Y

if possible. The leftmost column is column 0.

TAN
A function returning the tangent of its radian argument.

THEN
The part of the IF statement that precedes the statements to be executed if the IF

condition is TRUE. It may be replaced by: or a space.

TIME
A pseudo-variable which reads and sets the lower four bytes of the computational

real-time clock.

TO
The part of the FOR statement that precedes the loop limit.

TOP
A pseudo-variable which returns the value of the first free location after the end

of the current text.

TRACE
A statement that displays line numbers as they are executed for debugging purposes.

TRACE ON causes the interpreter to print executed line numbers when it encounters

them. TRACE X sets a limit on the size of line numbers which may be printed out:

only those less than X will appear. Thus a careful user with all subroutines at the end

of the main program can stop traced output of subroutine calls. TRACE OFF

turns TRACE off. Note that the interpreter does not execute line numbers very often:

Program
TRACE output

10 FORZ=0TO100

20 Q=Q*Z:NEXT
[10] [20] [30]

30 END

But things would be different were NEXT on line 25.

Then TRACE output would be:

[10] [20] [25] [25] [25] [25][25][25][25][25] [30]

TRUE
A pseudo-variable having the value –I1.

UNTIL
A part of the REPEAT ... UNTIL loop. The statements inside the loop are executed

until the expression following UNTIL yields TRUE.

USR
A function allowing machine code to return a value directly for applications which do

not require the facilities of CALL. USR calls the machine-code subroutine whose

address is it's argument, with the processor's A, X and Y registers and the C carry flag

initialised as in CALL, and returns a 32 bit integer composed of PYXA (msb to lsb).

VAL
A function which converts a character string representing a number into numeric form.

If the argument does not represent a unary signed decimal constant, VAL returns 0.

VDU
A statement which takes a list of numeric arguments and sends them to OSWRCH.

The arguments are normally separated by commas, whereupon the least-significant

byte of each is sent, but a semi-colon will cause the two least-significant bytes to be

sent. The bytes sent DO NOT contribute to the value of COUNT. Examples:

VDU28,0,31,32,0:REM define window

VDU27,0;0;1280;1024;

VPOS
Not implemented.

WIDTH
A statement controlling the overall screen width for printing. The initial value is WIDTH

0 when the interpreter will not attempt to control the overall field width. WIDTH n will

cause the interpreter to force a new line after n MOD 256 characters have been

printed.

Operators and Symbols

!
A unary and binary operator giving 32 bit indirection.

?
A unary and binary operator giving 8 bit indirection.

"
A delimiting character in strings. Strings always have an even number of
double-

quotes in them. Double-quotes may be introduced into a string by the escape

convention " " .

A character indicating an immediate operand in assembler. It also precedes reference

to a file channel number (and is not optional).

$
A character indicating that the object has something to do with a string. The syntax

$<expression> may be used to position a string anywhere in memory, overriding the

interpreter's space allocation. As a suffix on a variable name it indicates a string

variable.

%
A suffix on a variable name indicating an integer variable.

&
A prefix to hexadecimal constants e.g. &EF.

‘
A character which causes new lines in PRINT or INPUT.

()
Objects in parentheses have highest priority.

=
A character signifying 'becomes' in assignment, LET and FOR statements, 'result is'

for FN, and relation of 'equal to' on integers, reals and strings.

-
Unary negation and binary subtraction on integers and reals.

· Binary multiplication on integers and reals; statement indicating operating system

command.

:
Multi-statement line statement delimiter.

;
A character which suppresses forthcoming action in PRINT or INPUT.

+
Unary plus and binary addition on integers and reals; concatenation between strings.

,
Delimiter in lists.

.
Decimal point in real constants; abbreviation symbol on keyword entry; introduces

label in assembler.

<
Relation of 'less than' on integers, reals and strings.

>
Relation of 'greater than'on integers, reals and strings.

/
Binary division on integers and reals.

<=
Relation of 'less than or equal' on integers, reals and strings.

>=
Relation of 'greater than or equal'on integers, reals and strings.

<>
Relation of 'not equal' on integers, reals and strings.

[]
Delimiters for assembler statements. Statements between these delimiters will need to

be assembled twice in order to resolve any forward references. The pseudo-operation

OPT (initially 3) controls errors and listing. Example:

10 OSWRCH=&FFF4

20 FORZ=1TO3STEP2:P%=TOP+1000

30 [OPT Z : .START LDA # ASC"!"

40 LDX # 40

50 .LOOP JSR OSWRCH

60 DEX:BNE LOOP

70 RTS:] NEXT

80 CALL START

90 END

^
Binary operation of exponentiation between integers and reals.

~
A character in the start of a print field indicating that the item is to be printed in

hexadecimal.

Variable Names and Expression Priority

Variable names may be of any length and can contain any of the upper- and lower-case letters, digits, underline and pound sign. They must begin with a letter but cannot begin with a keyword, since keywords are recognised before anything else, for example, both DEG and ASN in DEGASN are recognised, but neither is recognised in ADEGASN, which is therefore interpreted as a variable name. Integer variables end with % and string variables end with $. Names may begin with pseudo-variables (PI, LOMEM, HIMEM, TRUE, FALSE, PAGE), but note that PI%, PI$ etc are still not allowed.

The various expression components have the following decreasing order of priority:

1 variables, functions () ! ? &, unary + -NOT

2
^

3
* / MOD DIV

4
+ -

5 = <> <= >= > <

6
AND

7
EOR OR

The Assembler

BBC BASIC for the ATOM includes a two-pass assembler using standard 6502 mnemonics. This is similar to the ATOM BASIC assembler in many ways. The following brief description assumes the user is familiar with it.

A section of assembler is introduced in BASIC between [and]. The [is often followed by an OPT statement, which controls the assembler listing and error messages (see under keyword OPT). P% is used as the pseudo-program counter and holds the address to which the code is assembled. It should be set accordingly for each pass, for example:

10 DIMMC%lOO

20 FORI%=OTO3STEP3

30 P%=MC%

40 [OPTI%

50 assembler statements

60]

70 NEXT I%

The same rules apply to the names of labels and symbols as to BASIC variables. To define a label, it should be preceded by '.', and it should be separated from the following instruction or further label by one or more spaces. The '.' is not used when the label appears in operand context. There are no EQ or DST operations and the symbol-defining functions of these are handled by BASIC assignments outside the assembler section. The instruction mnemonics are the standard three-letter 6502 ones (as in the ATOM assembler). The form of the operand field following the instruction mnemonic indicates the addressing mode as follows:

Operand
Addressing

Field

Mode

blank
implied

A
accumulator

#b
immediate

d
absolute

d,X
absolute indexed by X

d,Y
absolute indexed by Y

(d) absolute indirect

(d),Y
indexed indirect

(d,X)
indirect indexed

The symbols band d represent legal expressions in BASIC which are evaluated during assembly to

provide the operand value. The expression b must yield a value between 0 and 255 or an error is generated. The expression d can do so, in which case a zero-page instruction will be assembled if appropriate and available. There is no mechanism for explicitly selecting zero-page or absolute instructions. Note that if errors are suppressed during the first pass, the value of P% will be assembled in place of any undefined operand. When assembling other than to zero-page, symbols in expressions referring to zero-page should be defined before they are used so that the assembler can use zero-page instructions on the first pass.

More than one statement can be put on a line by separating them with ‘ : ‘ . Beware of using ' : ' in string constants in expressions, e.g. #ASC ":" - this will confuse the assembler. The \ character introduces a comment up to the next ‘ : ‘ character.

BASIC Error Messages and Codes

Silly

LINE space

RENUMBER space
Bad Program

No room

1Out of range
2 Byte

3 Index
4 Mistake

5 Missing ,
6 Type mismatch

7 No FN
8 $ range

9 Missing "
10 Bad DIM

11 DIM space
12 Not LOCAL

13 No PROC
14 Array

15 Subscript
16 Syntax error

17 Escape
18 Division by zero

19 String too long
20 Too big

21 -ve root
22 Log range

23 Accuracy lost
24 Exp range

25 Bad MODE
26 No such variable

27 Missing)
28 Bad hex

29 No such FN/PROC
30 Bad call

31 Arguments
32 No FOR

33 Can't match FOR
34 FOR variable

35 Too many FORs
36 No TO

37 Too many GOSUBs
38 No GOSUB

39 ON syntax
40 ON range

41 No such line
42 Out of DATA

43 No REPEAT
44 Too many REPEATs

Operating System Commands

The three operating system commands available via BBC BASIC are identical to the equivalent normal ATOM commands.

*CAT
-
Catalogue the tape

*SAVE
-
Save a named file

*LOAD
-
Load a named file

Operating System Routines

OSFIND
-
Entry address &FFCE, vector address &21C This is a dummy routine provided for

compatability with BBC BASIC. Its normal function is to open a file for reading and

writing, but since this is not required by the ATOM COS and only one file (channel

number 13) can be open at any time, the routine will not be used by the user.

OSGBPB
-
Not implemented

OSBPUT
-
Entry address &FFD4, vector address &218 This routine puts a byte in A to the tape. On

entry y contains the channel number (13). On exit A, X and y are preserved, N, V and Z

are undefined and D=O.

OSBGET
-
Entry address &FFD7, vector address &216 This routine gets a byte from tape and

returns it in A. On entry y contains the channel number (13). On exit X and Y are

preserved, N, V, and Z are undefined and D=O.

OSARGS
-
Not implemented

OSWRCH
-
Entry address &FFEE, vector address &20E This routine writes the character in A to the

screen. On exit A, X and Yare preserved, C,N,V and Z are undefined and D=O. The

interrupt state is preserved but interrupts may be enabled during the operation. All lower

case letters are converted to upper case. The following control codes (in hex) are

provided:

0 Does nothing

7
Bleep

8,9,A,B
Cursor movements

C
Clear screen

D
Carriage return

E,F
Page mode on/off

16 Select screen mode

19
PLOT M,X,Y

1E
Home cursor

OSBYTE
-
Entry address &FFF4, vector address &20A The multi-purpose OS routine. The call

number is passed in A and the X and Y registers are used to pass other values. Values

are returned in X and/or Y. The calls and their functions are as follows:

Call
Function

(Hex)

7E
Acknowledge escape condition.

81 Read key within time limit. The call waits for the specified time or until a key is

pressed. The delay in centi-seconds is passed in Y (ms byte) and X (15 byte),

maximum value &7FFF. On exit Y contains either &lB if ESC was pressed, &FF

if time-out occurred, or O with X containing the character detected. In the event

of ESC being pressed, OSBYTE &7E must be used to acknowledge it. OSBYTE

&81 with negative values in A is not implemented.

82 Read top of OS RAM address. This call returns the address of the first free

location in memory above that required by the operating system in Y

(ms byte) and X (15 byte).

83 Read bottom of display RAM address. This call returns the lowest memory

address used by the screen in Y (ms byte) and X (15 byte).

OSWORD
-
Entry address &FFF1, vector address &20C This routine invokes a number of

miscellaneous OS operations that require more data or return more values than can be

handled by OSBYTE. It is entered with the call number in A, and Y (ms byte) and X (Is

byte) pointing to a parameter block. The calls and their functions are as follows:

Call
Function

(Hex)

0 Read an input line. On entry the parameter block should contain, starting at byte

0, the address of the buffer for the line (2 bytes), the maximum length of line,

the minimum acceptable ASCII code, and the maximum acceptable ASCII code.

On exit C=1 indicates that the line was terminated by ESC rather than CR, and

Y contains the length of the line, including the CR if C=O.

1 Read 5-byte system time. This call reads the elapsed-time clock into the five

bytes pointed to by X and Y. The clock is incremented by one every 10ms.

2 Write 5-byte system time. This call writes the value at the five bytes pointed to

by X and Y into the elapsed-time clock.

7
Generate a sound. This call generates a sound defined by the 4 2-byte values

pointed to by X and Y. Refer to the keyword SOUND for details.

OSCLI
-
Entry address &FFF7, vector address &208 This routine sends a command line to the

interpreter. On entry X (Is byte) and Y (ms byte) point to the command line, terminated

by &D. Leading spaces and asterisks are removed.

Operating System Error Messages

Not Implemented
A non-implemented OS call was used, probably via one of the BASIC keywords

listed as 'Not implemented'.

All further errors are identical to the corresponding normal ATOM errors.

Name
The filename specified in LOAD, SAVE, *LOAD or *SAVE was not a legal

filename.

Bad Command
The operating system command was unrecognised.

Sum
Erroneous data was received while loading from tape.

Syntax
An operating system command was recognised, but was followed by illegal

parameters.

MOS Extension ROM

Provision is made for a MOS extension ROM to be fitted at &COOO. The first byte should hold &AA, and after the initialization of vectors etc. by the operating system this ROM will be entered at &COOl by a JSR instruction.

Example Programs

10 REM LISSAJOUX 1

20 MODE1

50 FOR F=0 TO 4 STEP 0.2

60 MOVE 640,912 70 A=0

80 REPEAT

90 A=A+0.1

100 DRAW 400*SIN(A)+640,400*COS(A*F)+512

110 UNTIL INKEY(0)=32

120 CLG

130 NEXT 140 END

10 REM LISSAJOUX 2

20 MODE1

40 B%=RND(5)

50 C%=RND(5)

60 FOR A=0 TO 1000 STEP PI/30

70 X%=250*COS(A)

80 MOVE X%+640,X%+512

90 DRAW 500*COS(A/B%)+640,500*SIN(A/C%)

100 NEXT

10 REM C-CURVE

20 MODE0

30 MIN%=12

40 MOVE 300,200

50 PROCC (200,0)

60 REPEAT UNTIL FALSE

70 DEFPROCC (L%,ANGLE)

80 IF L%<MIN% THEN PLOT1,L%*COS(ANGLE), L%*SIN(ANGLE):ENDPROC

90 L%=L%/SQR(2)

100 PROCC (L%,ANGLE+PI/4)

110 PROCC (L%,ANGLE-PI/4)

120 ENDPROC

10 REM TOWER OF HANOI

20 INPUT "NUMBER OF DISCS ",F

30 PROCHANOI (F,1,2,3)

40 END ,

50 DEFPROCHANOI (A,B,C,D) IF A=O ENDPROC

60 PROCHANOI(A-1,B;D,C)

70 PRIN'1' "MOVE DISC ";A;" FROM PILE ";B; " TO PILE ";C

[image: image1.png]80 PROCHANOI (A-1,D,C,B) 90 ENDPROC

[image: image2.emf]
